FORTY-SIXTH ANNUAL WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Saturday, December 7, 1985

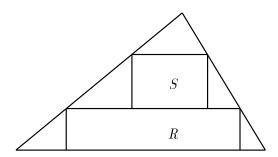
Examination A

A-1. Determine, with proof, the number of ordered triples (A_1, A_2, A_3) of sets which have the property that

- (i) $A_1 \cup A_2 \cup A_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$ and
 - (ii) $A_1 \cap A_2 \cap A_3 = \emptyset$,

where \emptyset denotes the empty set. Express the answer in the form $2^a 3^b 5^c 7^d$, where a, b, c and d are nonnegative integers.

A-2. Let T be an acute triangle. Inscribe a pair R, S of rectangles in T as shown:



Let A(X) denote the area of polygon X. Find the maximum value, or show that no maximum exists, of $\frac{A(R) + A(S)}{A(T)}$, where T ranges over all triangles and R, S over all rectangles as above.

A-3. Let d be a real number. For each integer $m \geq 0$, define a sequence $\{a_m(j)\}, j = 0, 1, 2, \ldots$ by the condition

$$a_m(0) = d/2^m$$
, and $a_m(j+1) = (a_m(j))^2 + 2a_m(j)$, $j \ge 0$.

Evaluate $\lim_{n\to\infty} a_n(n)$.

A-4. Define a sequence $\{a_i\}$ by $a_1 = 3$ and $a_{i+1} = 3^{a_i}$ for $i \ge 1$. Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many a_i ?

A-5. Let $I_m = \int_0^{2\pi} \cos(x) \cos(2x) \cdots \cos(mx) dx$. For which integers $m, 1 \le m \le 10$, is $I_m \ne 0$?

A-6. If $p(x) = a_0 + a_1 x + \cdots + a_m x^m$ is a polynomial with real coefficients a_i , then set

$$\Gamma(p(x)) = a_0^2 + a_1^2 + \dots + a_m^2.$$

Let $f(x) = 3x^2 + 7x + 2$. Find, with proof, a polynomial g(x) with real coefficients such that

(i)
$$g(0) = 1$$
,

and

(ii)
$$\Gamma(f(x)^n) = \Gamma(g(x)^n)$$
,

for every integer $n \geq 1$.

FORTY-SIXTH ANNUAL WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Saturday, December 7, 1985

Examination B

B-1. Let k be the smallest positive integer with the following property:

There are distinct integers m_1, m_2, m_3, m_4, m_5 such that the polynomial

$$p(x) = (x - m_1)(x - m_2)(x - m_3)(x - m_4)(x - m_5)$$

has exactly k nonzero coefficients.

Find, with proof, a set of integers m_1 , m_2 , m_3 , m_4 , m_5 for which this minimum k is achieved.

B-2. Define polynomials $f_n(x)$ for $n \ge 0$ by $f_0(x) = 1$, $f_n(0) = 0$ for $n \ge 1$, and

$$\frac{d}{dx}(f_{n+1}(x)) = (n+1)f_n(x+1)$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

B-3. Let

be a doubly infinite array of positive integers, and suppose each positive integer appears exactly eight times in the array. Prove that $a_{m,n} > mn$ for some pair of positive integers (m,n).

B-4. Let C be the unit circle $x^2 + y^2 = 1$. A point p chosen randomly on the circumference C and another point q chosen randomly from the interior of C (these points are chosen independently and uniformly over their domains). Let R be the rectangle with sides parallel to the x- and y-axes with diagonal pq. What is the probability that no point of R lies outside of C?

B-5. Evaluate $\int_0^\infty t^{-1/2} e^{-1985(t+t^{-1})} dt$. You may assume that $\int_{-\infty}^\infty e^{-x^2} dx = \sqrt{\pi}$.

B-6. Let G be a finite set of real $n \times n$ matrices $\{M_i\}$, $1 \le i \le r$, which form a group under matrix multiplication. Suppose that $\sum_{i=1}^r \operatorname{tr}(M_i) = 0$, where $\operatorname{tr}(A)$ denotes the trace of the matrix A. Prove that $\sum_{i=1}^r M_i$ is the $n \times n$ zero matrix.