The Fifty-Second William Lowell Putnam Mathematical Competition

December 7, 1991

A-1. A 2×3 rectangle has vertices at (0,0), (2,0), (0,3), and (2,3). It rotates 90° clockwise about the point (2,0). It then rotates 90° clockwise about the point (5,0), then 90° clockwise about the point (7,0), and finally, 90° clockwise about the point (10,0). (The side originally on the x-axis is now back on the x-axis.) Find the area of the region above the x-axis and below the curve traced out by the point whose initial position is (1,1).

A-2. Let **A** and **B** be different $n \times n$ matrices with real entries. If $\mathbf{A}^3 = \mathbf{B}^3$ and $\mathbf{A}^2 \mathbf{B} = \mathbf{B}^2 \mathbf{A}$, can $\mathbf{A}^2 + \mathbf{B}^2$ be invertible?

A-3. Find all real polynomials p(x) of degree $n \geq 2$ for which there exist real numbers $r_1 < r_2 < \cdots < r_n$ such that

(i)
$$p(r_i) = 0, \quad i = 1, 2, ..., n,$$

and

(ii)
$$p'\left(\frac{r_i+r_{i+1}}{2}\right)=0$$
 $i=1,2,\ldots,n-1,$

where p'(x) denotes the derivative of p(x).

A-4. Does there exist an infinite sequence of closed discs D_1, D_2, D_3, \ldots in the plane, with centers c_1, c_2, c_3, \ldots , respectively, such that

- (i) the c_i have no limit point in the finite plane,
- (ii) the sum of the areas of the D_i is finite, and
- (iii) every line in the plane intersects at least one of the D_i ?

A-5. Find the maximum value of

$$\int_0^y \sqrt{x^4 + (y - y^2)^2} \, dx$$

for $0 \le y \le 1$.

A-6. Let A(n) denote the number of sums of positive integers $a_1 + a_2 + \cdots + a_r$ that add up to n with $a_1 > a_2 + a_3, a_2 > a_3 + a_4, \ldots, a_{r-2} > a_{r-1} + a_r, a_{r-1} > a_r$. Let B(n) denote the number of $b_1 + b_2 + \cdots + b_s$ that add up to n, with

- (i) $b_1 \ge b_2 \ge \ldots \ge b_s$,
- (ii) each b_i is in the sequence $1, 2, 4, \ldots, g_j, \ldots$ defined by $g_1 = 1, g_2 = 2$, and $g_j = g_{j-1} + g_{j-2} + 1$, and
- (iii) if $b_1 = g_k$ then every element in $\{1, 2, 4, \dots, g_k\}$ appears at least once as a b_i .

Prove that A(n) = B(n) for each $n \ge 1$.

The Fifty-Second William Lowell Putnam Mathematical Competition

December 7, 1991

B-1. For each integer $n \ge 0$, let $S(n) = n - m^2$, where m is the greatest integer with $m^2 \le n$. Define a sequence $(a_k)_{k=0}^{\infty}$ by $a_0 = A$ and $a_{k+1} = a_k + S(a_k)$ for $k \ge 0$. For what positive integers A is this sequence eventually constant?

B-2. Suppose f and g are non-constant, differentiable, real-valued functions on \mathbf{R} . Furthermore, suppose that for each pair of real numbers x and y,

$$f(x+y) = f(x)f(y) - g(x)g(y),$$

$$g(x + y) = f(x)g(y) + g(x)f(y).$$

If f'(0) = 0, prove that $(f(x))^2 + (g(x))^2 = 1$ for all x.

B-3. Does there exist a real number L such that, if m and n are integers greater than L, then an $m \times n$ rectangle may be expressed as a union of 4×6 and 5×7 rectangles, any two of which intersect at most along their boundaries?

B-4. Suppose p is an odd prime. Prove that

$$\sum_{j=0}^{p} \binom{p}{j} \binom{p+j}{j} \equiv 2^p + 1 \pmod{p^2}.$$

B-5. Let p be an odd prime and let \mathbf{Z}_p denote (the field of) the integers modulo p. How many elements are in the set

$${x^2 : x \in \mathbf{Z}_p} \cap {y^2 + 1 : y \in \mathbf{Z}_p}$$
?

B-6. Let a and b be positive numbers. Find the largest number c, in terms of a and b, such that

$$a^x b^{1-x} \le a \frac{\sinh ux}{\sinh u} + b \frac{\sinh u(1-x)}{\sinh u}$$

for all u with $0 < |u| \le c$ and for all x, 0 < x < 1. (Note: $\sinh u = (e^u - e^{-u})/2$.)