SIXTY-FOURTH ANNUAL WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Saturday, December 6, 2003

Examination A

A1. Let n be a fixed positive integer. How many ways are there to write n as a sum of positive integers,

$$n = a_1 + a_2 + \cdots + a_k,$$

with k an arbitrary positive integer and $a_1 \le a_2 \le \cdots \le a_k \le a_1 + 1$? For example, with n = 4, there are four ways: 4, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1.

- **A2.** Let $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$ be nonnegative real numbers. Show that $(a_1 a_2 \cdots a_n)^{1/n} + (b_1 b_2 \cdots b_n)^{1/n} \leq ((a_1 + b_1)(a_2 + b_2) \cdots (a_n + b_n))^{1/n}$.
- A3. Find the minimum value of

$$\left| \sin x + \cos x + \tan x + \cot x + \sec x + \csc x \right|$$

for real numbers x.

A4. Suppose that a, b, c, A, B, C are real numbers, $a \neq 0$ and $A \neq 0$, such that

$$\left| ax^2 + bx + c \right| \le \left| Ax^2 + Bx + C \right|$$

for all real numbers x. Show that

$$\left| b^2 - 4ac \right| \le \left| B^2 - 4AC \right|.$$

- **A5.** A Dyck n-path is a lattice path of n upsteps (1,1) and n downsteps (1,-1) that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path (up, up, down, up, down, down, down, up, down) has two returns, of length 3 and 1 respectively. Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck (n-1)-paths.
- **A6.** For a set S of nonnegative integers, let $r_S(n)$ denote the number of ordered pairs (s_1, s_2) such that $s_1 \in S$, $s_2 \in S$, $s_1 \neq s_2$, and $s_1 + s_2 = n$. Is it possible to partition the nonnegative integers into two sets A and B in such a way that $r_A(n) = r_B(n)$ for all n?

SIXTY-FOURTH ANNUAL WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Saturday, December 6, 2003

Examination B

B1. Do there exist polynomials a(x), b(x), c(y), d(y) such that

$$1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)$$

holds identically?

- **B2.** Let n be a positive integer. Starting with the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$, form a new sequence of n-1 entries $\frac{3}{4}, \frac{5}{12}, \dots, \frac{2n-1}{2n(n-1)}$, by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of n-2 entries and continue until the final sequence consists of a single number x_n . Show that $x_n < \frac{2}{n}$.
- **B3.** Show that for each positive integer n,

$$n! = \prod_{i=1}^{n} \operatorname{lcm} \left\{ 1, 2, \dots, \lfloor n/i \rfloor \right\}.$$

(Here lcm denotes the least common multiple, and $\lfloor x \rfloor$ denotes the greatest integer $\leq x$.)

- **B4.** Let $f(z) = az^4 + bz^3 + cz^2 + dz + e = a(z r_1)(z r_2)(z r_3)(z r_4)$ where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_1 + r_2$ is a rational number, and if $r_1 + r_2 \neq r_3 + r_4$, then r_1r_2 is a rational number.
- **B5.** Let A, B and C be equidistant points on the circumference of a circle of unit radius centered at O, and let P be any point in the circle's interior. Let a, b, c be the distances from P to A, B, C respectively. Show that there is a triangle with side lengths a, b, c, and that the area of this triangle depends only on the distance from P to O.
- **B6.** Let f(x) be a continuous real-valued function defined on the interval [0,1]. Show that

$$\int_0^1 \int_0^1 |f(x) + f(y)| \, dx \, dy \ge \int_0^1 |f(x)| \, dx.$$